
Tsinghua University

VAPRO: Performance Variance Detection and 
Diagnosis for Production-Run Parallel Applications

Liyan Zheng, Jidong Zhai, Xiongchao Tang, 
Haojie Wang, Teng Yu, Yuyang jin, 

Shuaiwen Leon Song, and Wenguang Chen 

Tsinghua University

The University of Sydney

PPoPP22 @ Virtual, 2022.04.05



Tsinghua University

What happened to my program 

2

Run a 256-process program (NPB-CG) on the same nodes 100 times

1.7x slower

Consume more resources Hard to understand its behavior

Bad nodes? Re-submission?

System performance variance

Optimization works?

When, where, and why variance happens?



Tsinghua University

Existing approaches & limitations

1. Benchmark: easy but intrusive

2. Profile/trace: widely used but expert efforts required 

3. Static analysis-based method: automatic but source code 
required and only for detection

• Ideal variance profilers for production environments

3

DiagnosisNo source code Automatic

How to detect and diagnose variance without source code



Tsinghua University

Observation

• Fixed-workload fragment (FWF): fragments of a 
program execution with the same workload

4

Key idea: identify fixed-workload fragments and 
leverage them for variance detection and diagnosis 

Performance = Workload / Time

Detected 

variance

Benchmark inside programs



Tsinghua University

(3) Diagnose variance

Variance

Sources

Vapro in a nutshell 

5
Image source (distributed with CC0): https://www.maxpixel.net/Egyptians-Egypt-Chephren-Pyramid-Culture-Gizeh-483

(2) Detect variance

Performance = Workload / Time
(1) Find fixed-workload fragments

Program 
execution

FWF
1

Binary-only

identification

FWF
2

Variance breakdown model



Tsinghua University

Fragment collection

• Fragment: an execution of a code snippet
• Three types: computation/communication/IO fragments

• Splitting program executions by external function 
invocations

• Communication, IO, and threading operations

• Intercept external function invocations with dynamic linker

• Challenge: fragments with different workloads are mixed
• How to represent workload when only binaries are available?

6

Computation fragments 

Communication fragments 1 Send(…);
2 if (…) calc0();
3 else calc1();
4 Recv(…);



Tsinghua University

Workload identification – computation 

• Workload measuring should remain stable under noises

• Identify computation workload by Performance Monitor 
Unit (PMU) metrics 

• TOT_INS is desired since it only counts the instructions of the 
specified process

• More candidate metrics: load/store/branch instructions, …

7

Timestamp counter (Execution time)
Total number of instructions

Fixed-workload computation fragments on Tianhe-2A



Tsinghua University

Workload identification –
communication & IO 

• PMU metrics are inconsistent with communication 
workload

• Use function arguments to identify workload
• E.g., MPI_Send(buf, count, datatype, dest, tag, comm)

8

Fixed-workload communication fragments (MPI_Send) on Tianhe-2A

How to identify FWF according to workload?



Tsinghua University

FWF identification

• Communication/IO workload is well-described

• Computation: inherent error of PMU mechanism

• Clustering workload metrics to identify FWF

9

Timestamp counter (Execution time)
Total number of instructions

Fixed-workload computation fragments on Tianhe-2A

Zoom in



Tsinghua University

Performance calculation

• Report application performance to users

• Normalize execution time to relative performance
• Shortest time → relative performance 1

• Longer time → smaller relative performance (0~1)

• Report performance of a period
• Performance of a period is the weighted average of all 

FWFs in the period with execution time as weight

10

11ms 10ms 12ms

30ms 29ms

11ms

27ms

13msFWF 1

FWF 2

Norm. perf. 0.91 1.00 0.83 0.90 0.93 0.91 1.00 0.76



Tsinghua University

Diagnosis

• Challenge: infeasible to monitor all performance 
data

• Hundreds of CPU PMU metrics

• Software performance metrics

• Idea: can we divide variance into several factors?

11



Tsinghua University

Variance breakdown 

• Divide extra execution time caused by variance
• Three factors: computation, communication, IO

• How about finer-grained factors
• Such as detailed events in a CPU and an OS

12

Total variance
10s

Computation
4s

Communication
3s

IO
2s

CPU
Mem. 
Access

OS Congestion Bandwidth …

… … … … … … … … … …



Tsinghua University

Diagnosis – hardware PMU

• Similar structures in PMU of CPUs❕

• Top-down Microarchitecture Analysis (TMA) method[5]

1. Organizing functional blocks of pipeline into a tree hierarchy

2. Enables cycle-accounting for functional blocks 

• E.g.: Time of frontend bound =
𝐼𝐷𝑄_𝑈𝑂𝑃𝑆_𝑁𝑂𝑇_𝐷𝐸𝐿𝐼𝑉𝐸𝑅𝐸𝐷.𝐶𝑂𝑅𝐸

4×𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷.𝑇𝐻𝑅𝐸𝐴𝐷
(for Intel Ivy Bridge)

• Breakdown of execution time

13

Fr
o

n
te

n
d

 
B

o
u

n
d

B
ad

 
Sp

ec
u

la
ti

o
n

R
et

ir
in

g

Backend bound

C
o

re
 

b
o

u
n

d

Memory bound

L1 
bound

L2 
bound

L3 
bound

DRAM 
bound

Can we break down variance?



Tsinghua University

Quantify the time of TMA factors

• Differentiate normal fragments and slow fragments
• Time of execution → Time of variance

• Pinpoint which reason causes the variance

14

Variance 0s

Frontend 
Bound

Bad 
Speculation

Retiring
Backend 
bound

1s

1s

Normal 
fragment

Slow 
fragment

1s 1s 1s

1s 1s 2s

0s 0s 1s

Differences



Tsinghua University

Diagnosis – software metrics

• Can we apply this approach beyond TMA metrics?

• Variance breakdown model
• Support both hardware and software factors

• Problem: Software factors are not quantified in time
• Linux provides the count of events, instead of time

15

Computation time of fixed-workload fragments

FB B
S

R
et

ir
in

g

Backend bound

C
o

re
 

b
o

u
n

d

Memory bound

L1 
bound

L2 
bound

L3 
bound

Suspension

DRAM 
bound

Page fault 
(PF)

Soft
PF

Hard
PF

Context switch 
(CS)

Volun-
tary CS

Si
gn

al

Involun-
tary CS

Factors quantified in time Factors unquantified in time

Process is running on CPU Process is suspended

Stage 1

Stage 2

Stage 3



Tsinghua University

Quantify the time of software factors

• We have a great number of fixed-workload fragments
• Time & performance counters

• Same workload

• Assume each metric has a linear impact on execution 
time

𝑡𝑖𝑚𝑒𝑖 = 𝛽0 + 𝛽1𝐹𝑎𝑐𝑡𝑜𝑟𝑖1 +⋯+ 𝛽𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑛 + 𝜖𝑖
• 𝛽𝑗 is the impact of a single unit of Factor j on execution time 

• With a regression on FWFs, we can quantify variance for 
each factor

16

Pe
rf

o
rm

an
ce

m
et

ri
c

Time

All other fragments

FWFs of same workload

Regression line

Statistical method for estimating the time of each factor



Tsinghua University

Progressive variance diagnosis

• Variance is inclusive on the performance breakdown model

• Diagnose performance variance stage-by-stage
• Locate coarse-grained factors first and drill down the hierarchy

• Small overhead: only collects performance counters for 
current stage

17

Computation time of fixed-workload fragments

FB B
S

R
et

ir
in

g

Backend bound

C
o

re
 

b
o

u
n

d

Memory bound

L1 
bound

L2 
bound

L3 
bound

Suspension

DRAM 
bound

Page fault 
(PF)

Soft
PF

Hard
PF

Context switch 
(CS)

Volun-
tary CS

Si
gn

al

Involun-
tary CS

Factors quantified in time Factors unquantified in time

Process is running Process is suspended

Stage 1

Stage 2

Stage 3



Tsinghua University

Evaluation
Platforms:

Tianhe-2A system in NSCC-Guangzhou (for MPI programs) 

• Dual Xeon E5-2692(v2) (24 cores in total) and 64GB memory.

Gorgon cluster in Tsinghua (for OpenMP programs)

• Dual Xeon E5-2670(v3) (24 cores in total) and 128GB memory

Benchmarks:

MPI programs: CESM, AMG, and 7 programs from the NPB benchmark 
suite

• Up to 2048 processes

OpenMP programs: BERT, PageRank, WordCount, and 6 programs from 

the PARSEC benchmark suite 

Baseline:

vSensor[1]: finds code snippets with fixed workload as benchmark with 
compiler analysis

18



Tsinghua University

Basic results 

19

• Detection coverage =
𝑇𝑖𝑚𝑒 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐹𝐾𝐹𝑠

𝐸𝑥𝑢𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

0

1

2

3

4

5

6

AMG CESM BT CG EP FT LU MG SP Mean

MPI applications - Performance overhead (%)

vSensor Vapro

0

20

40

60

80

100

AMG CESM BT CG EP FT LU MG SP Mean

MPI applications - Detection coverage (%)

vSensor Vapro

0
1
2
3
4
5
6

OpenMP applications - Performance overhead (%)

Vapro

0

20

40

60

80

100

OpenMP applications - Detection coverage (%)

Vapro

1.8% overhead

75.5% coverage

1.0% overhead

74.1% coverage

30.8% higher than vSensor

0.8% higher than vSensor
(which is based on static analysis)



Tsinghua University

Result visualization 

20

*An example result for computation performance, detected for a 128 processes program. 

Where
Darker is better

When

Light color blocks → bad performance



Tsinghua University

Case studies – a CPU cache bug

• HPL on dual Intel Xeon Gold 6140 processers
• The benchmark of TOP500

• Stable performance

• Detection: an abnormal run with 22.2% longer execution 
time

21

Variance only 
happens on Socket 1



Tsinghua University

Case studies – a CPU cache bug (cont.)

• An abnormal HPL run with 1.22x execution time

• Diagnosis

22

Computation time of fixed-workload fragments

FB B
S

R
et

ir
in

g

Backend bound

C
o

re
 

b
o

u
n

d

Memory bound

L1 
bound

L2 
bound

L3 
bound

Suspension

DRAM 
bound

Page fault 
(PF)

Soft
PF

Hard
PF

Context switch 
(CS)

Volun-
tary CS

Si
gn

al

Involun-
tary CS

Process is running Process is suspended

Stage 1

Stage 2

Stage 3

96.6% of variance

38.0%48.2%

≥86.2%

Extra cache misses and memory
accesses impair the performance



Tsinghua University

Case studies – a CPU cache bug (cont.)

• Validation: an Intel processor hardware bug [3,4]

• Makes data in the L2 cache evicted

• Randomly generates significant slowdowns

• Solution: huge page mitigates this problem

• Vapro avoids time-consuming re-executions for 
diagnosing this non-deterministic problem

23

Distribution of HPL performance with huge page

reduce standard 
derivation of execution 

time by 51.3% 



Tsinghua University

Case studies – memory problem

• Detection: processes on a node have low performance

• Diagnosis: backend bound explains 97.2% of the 
slowdown

• Validation: memory bandwidth of the problematic node is 
15.5% lower than others

• Solution: replacing this node yielding a 1.24× speedup

24

128-process Nekbone on Tianhe-2A



Tsinghua University

Case studies –
IO performance variance
• RAxML: a phylogenetic analysis application

• Detection: 10 executions ranges from 41.1s to 68.0s
• Both computation and communication is stable

• Solution: A simple file buffer yielding a 1.18x speedup and a 73.5% 
reduction in the standard deviation of overall execution time

25

IO performance of 512-process RAxML on Tianhe-2A

Process 0 has 
significantly lower 

performance

Time of consecutive read and write operations fixed workload in RAxML

Significant variance for 
Read on distributed FS



Tsinghua University

Conclusion

26

The take away point: 
Challenges Techniques

No source code 👉 Workload identification

Diagnosis 👉 Variance breakdown

Vapro is a variance profiler that can detect and diagnose 

variance without source code.

More details in the paper



Tsinghua University

PACMAN
pacman.cs.tsinghua.edu.cn

Q&A
Thank you!



Tsinghua University

Part of References
[1] Xiongchao Tang, Jidong Zhai, Xuehai Qian, Bingsheng He, Wei Xue, 
and Wenguang Chen. 2018. vSensor: leveraging fixed-workload 
snippets of programs for performance variance detection. In 
Proceedings of the 23rd ACM SIGPLAN symposium on principles and 
practice of parallel programming (PPoPP’18). 124–136.

[2] Jeffrey Vetter and Chris Chambreau. 2005. mpip: Lightweight, 
scalable mpi profiling.

[3] Intel. 2018. Addressing Potential DGEMM/HPL Perf Variability on 24-
Core Intel Xeon Processor Scalable Family. White paper, number 
606269, revision 1.0.

[4] John D McCalpin. 2018. HPL and DGEMM performance variability 
on the Xeon Platinum 8160 processor. In SC18: International 
Conference for High Performance Computing, Networking, Storage and 
Analysis. IEEE, 225–237.

[5] Ahmad Yasin. 2014. A top-down method for performance analysis 
and counters architecture. In 2014 IEEE International Symposium on 
Performance Analysis of Systems and Software (ISPASS’14). IEEE, 
35–44.

28


