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What happened to my program 
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Run a 256-process program (NPB-CG) on the same nodes 100 times

1.7x slower

Consume more resources Hard to understand its behavior

Bad nodes? Re-submission?

System performance variance

Optimization works?

When, where, and why variance happens?
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Existing approaches & limitations

1. Benchmark: easy but intrusive

2. Profile/trace: widely used but expert efforts required 

3. Static analysis-based method: automatic but source code 
required and only for detection

• Ideal variance profilers for production environments
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DiagnosisNo source code Automatic

How to detect and diagnose variance without source code
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Observation

• Fixed-workload fragment (FWF): fragments of a 
program execution with the same workload
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Key idea: identify fixed-workload fragments and 
leverage them for variance detection and diagnosis 

Performance = Workload / Time

Detected 

variance

Benchmark inside programs
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(3) Diagnose variance

Variance

Sources

Vapro in a nutshell 
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Image source (distributed with CC0): https://www.maxpixel.net/Egyptians-Egypt-Chephren-Pyramid-Culture-Gizeh-483

(2) Detect variance

Performance = Workload / Time
(1) Find fixed-workload fragments

Program 
execution

FWF
1

Binary-only

identification

FWF
2

Variance breakdown model
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Fragment collection

• Fragment: an execution of a code snippet
• Three types: computation/communication/IO fragments

• Splitting program executions by external function 
invocations

• Communication, IO, and threading operations

• Intercept external function invocations with dynamic linker

• Challenge: fragments with different workloads are mixed
• How to represent workload when only binaries are available?
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Computation fragments 

Communication fragments 1 Send(…);
2 if (…) calc0();
3 else calc1();
4 Recv(…);
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Workload identification – computation 

• Workload measuring should remain stable under noises

• Identify computation workload by Performance Monitor 
Unit (PMU) metrics 

• TOT_INS is desired since it only counts the instructions of the 
specified process

• More candidate metrics: load/store/branch instructions, …
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Timestamp counter (Execution time)
Total number of instructions

Fixed-workload computation fragments on Tianhe-2A
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Workload identification –
communication & IO 

• PMU metrics are inconsistent with communication 
workload

• Use function arguments to identify workload
• E.g., MPI_Send(buf, count, datatype, dest, tag, comm)
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Fixed-workload communication fragments (MPI_Send) on Tianhe-2A

How to identify FWF according to workload?
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FWF identification

• Communication/IO workload is well-described

• Computation: inherent error of PMU mechanism

• Clustering workload metrics to identify FWF
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Timestamp counter (Execution time)
Total number of instructions

Fixed-workload computation fragments on Tianhe-2A

Zoom in
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Performance calculation

• Report application performance to users

• Normalize execution time to relative performance
• Shortest time → relative performance 1

• Longer time → smaller relative performance (0~1)

• Report performance of a period
• Performance of a period is the weighted average of all 

FWFs in the period with execution time as weight
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11ms 10ms 12ms

30ms 29ms

11ms

27ms

13msFWF 1

FWF 2

Norm. perf. 0.91 1.00 0.83 0.90 0.93 0.91 1.00 0.76
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Diagnosis

• Challenge: infeasible to monitor all performance 
data

• Hundreds of CPU PMU metrics

• Software performance metrics

• Idea: can we divide variance into several factors?
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Variance breakdown 

• Divide extra execution time caused by variance
• Three factors: computation, communication, IO

• How about finer-grained factors
• Such as detailed events in a CPU and an OS
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Total variance
10s

Computation
4s

Communication
3s

IO
2s

CPU
Mem. 
Access

OS Congestion Bandwidth …

… … … … … … … … … …
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Diagnosis – hardware PMU

• Similar structures in PMU of CPUs❕

• Top-down Microarchitecture Analysis (TMA) method[5]

1. Organizing functional blocks of pipeline into a tree hierarchy

2. Enables cycle-accounting for functional blocks 

• E.g.: Time of frontend bound =
𝐼𝐷𝑄_𝑈𝑂𝑃𝑆_𝑁𝑂𝑇_𝐷𝐸𝐿𝐼𝑉𝐸𝑅𝐸𝐷.𝐶𝑂𝑅𝐸

4×𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷.𝑇𝐻𝑅𝐸𝐴𝐷
(for Intel Ivy Bridge)

• Breakdown of execution time
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Quantify the time of TMA factors

• Differentiate normal fragments and slow fragments
• Time of execution → Time of variance

• Pinpoint which reason causes the variance
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Variance 0s

Frontend 
Bound

Bad 
Speculation

Retiring
Backend 
bound

1s
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fragment

Slow 
fragment

1s 1s 1s

1s 1s 2s

0s 0s 1s

Differences
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Diagnosis – software metrics

• Can we apply this approach beyond TMA metrics?

• Variance breakdown model
• Support both hardware and software factors

• Problem: Software factors are not quantified in time
• Linux provides the count of events, instead of time
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Computation time of fixed-workload fragments
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Quantify the time of software factors

• We have a great number of fixed-workload fragments
• Time & performance counters

• Same workload

• Assume each metric has a linear impact on execution 
time

𝑡𝑖𝑚𝑒𝑖 = 𝛽0 + 𝛽1𝐹𝑎𝑐𝑡𝑜𝑟𝑖1 +⋯+ 𝛽𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑛 + 𝜖𝑖
• 𝛽𝑗 is the impact of a single unit of Factor j on execution time 

• With a regression on FWFs, we can quantify variance for 
each factor
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Progressive variance diagnosis

• Variance is inclusive on the performance breakdown model

• Diagnose performance variance stage-by-stage
• Locate coarse-grained factors first and drill down the hierarchy

• Small overhead: only collects performance counters for 
current stage
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Computation time of fixed-workload fragments
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Evaluation
Platforms:

Tianhe-2A system in NSCC-Guangzhou (for MPI programs) 

• Dual Xeon E5-2692(v2) (24 cores in total) and 64GB memory.

Gorgon cluster in Tsinghua (for OpenMP programs)

• Dual Xeon E5-2670(v3) (24 cores in total) and 128GB memory

Benchmarks:

MPI programs: CESM, AMG, and 7 programs from the NPB benchmark 
suite

• Up to 2048 processes

OpenMP programs: BERT, PageRank, WordCount, and 6 programs from 

the PARSEC benchmark suite 

Baseline:

vSensor[1]: finds code snippets with fixed workload as benchmark with 
compiler analysis
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Basic results 
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• Detection coverage =
𝑇𝑖𝑚𝑒 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐹𝐾𝐹𝑠

𝐸𝑥𝑢𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
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(which is based on static analysis)
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Result visualization 
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*An example result for computation performance, detected for a 128 processes program. 

Where
Darker is better

When

Light color blocks → bad performance
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Case studies – a CPU cache bug

• HPL on dual Intel Xeon Gold 6140 processers
• The benchmark of TOP500

• Stable performance

• Detection: an abnormal run with 22.2% longer execution 
time

21

Variance only 
happens on Socket 1
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Case studies – a CPU cache bug (cont.)

• An abnormal HPL run with 1.22x execution time

• Diagnosis
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Computation time of fixed-workload fragments

FB B
S

R
et

ir
in

g

Backend bound

C
o

re
 

b
o

u
n

d

Memory bound

L1 
bound

L2 
bound

L3 
bound

Suspension

DRAM 
bound

Page fault 
(PF)

Soft
PF

Hard
PF

Context switch 
(CS)

Volun-
tary CS

Si
gn

al

Involun-
tary CS

Process is running Process is suspended

Stage 1

Stage 2

Stage 3

96.6% of variance

38.0%48.2%

≥86.2%

Extra cache misses and memory
accesses impair the performance



Tsinghua University

Case studies – a CPU cache bug (cont.)

• Validation: an Intel processor hardware bug [3,4]

• Makes data in the L2 cache evicted

• Randomly generates significant slowdowns

• Solution: huge page mitigates this problem

• Vapro avoids time-consuming re-executions for 
diagnosing this non-deterministic problem
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Distribution of HPL performance with huge page

reduce standard 
derivation of execution 

time by 51.3% 
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Case studies – memory problem

• Detection: processes on a node have low performance

• Diagnosis: backend bound explains 97.2% of the 
slowdown

• Validation: memory bandwidth of the problematic node is 
15.5% lower than others

• Solution: replacing this node yielding a 1.24× speedup
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128-process Nekbone on Tianhe-2A
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Case studies –
IO performance variance
• RAxML: a phylogenetic analysis application

• Detection: 10 executions ranges from 41.1s to 68.0s
• Both computation and communication is stable

• Solution: A simple file buffer yielding a 1.18x speedup and a 73.5% 
reduction in the standard deviation of overall execution time
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IO performance of 512-process RAxML on Tianhe-2A

Process 0 has 
significantly lower 

performance

Time of consecutive read and write operations fixed workload in RAxML

Significant variance for 
Read on distributed FS
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Conclusion

26

The take away point: 
Challenges Techniques

No source code 👉 Workload identification

Diagnosis 👉 Variance breakdown

Vapro is a variance profiler that can detect and diagnose 

variance without source code.

More details in the paper
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PACMAN
pacman.cs.tsinghua.edu.cn

Q&A
Thank you!
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