
Vapro: Performance Variance Detection and Diagnosis
for Production-Run Parallel Applications
Liyan Zheng

Tsinghua University
zhengly20@mails.tsinghua.edu.cn

Jidong Zhai
Tsinghua University

zhaijidong@tsinghua.edu.cn

Xiongchao Tang
Tsinghua University and Sangfor

Technologies Inc.
tomxice@gmail.com

Haojie Wang
Tsinghua University

wanghaojie@tsinghua.edu.cn

Teng Yu
Tsinghua University

yuteng@tsinghua.edu.cn

Yuyang Jin
Tsinghua University

jyy17@mails.tsinghua.edu.cn

Shuaiwen Leon Song
University of Sydney

leonangel991@gmail.com

Wenguang Chen
Tsinghua University and BNRist

cwg@tsinghua.edu.cn

Abstract
Performance variance is a serious problem for parallel ap-
plications, which can cause performance degradation and
make applications’ behavior hard to understand. Therefore,
detecting and diagnosing performance variance are of crucial
importance for users and application developers. However,
previous detection approaches either bring too large over-
head and hurt applications’ performance, or rely on nontriv-
ial source code analysis that is impractical for production-run
parallel applications.

In this work, we propose Vapro, a performance variance
detection and diagnosis framework for production-run par-
allel applications. Our approach is based on an important
observation that most parallel applications contain code
snippets that are repeatedly executed with fixed workload,
which can be used for performance variance detection. To
effectively identify these snippets at runtime even without
program source code, we introduce State Transition Graph
(STG) to track program execution and then conduct light-
weight workload analysis on STG to locate variance. To
diagnose the detected variance, Vapro leverages a progres-
sive diagnosis method based on a hybrid model leveraging
variance breakdown and statistical analysis. Results show
that the performance overhead of Vapro is only 1.38% on
average. Vapro can detect the variance in real applications
caused by hardware bugs, memory, and IO. After fixing the
detected variance, the standard deviation of the execution

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9204-4/22/04.
https://doi.org/10.1145/3503221.3508411

time is reduced by up to 73.5%. Compared with the state-of-
the-art variance detection tool based on source code analysis,
Vapro achieves 30.0% higher detection coverage.

CCS Concepts: • Computing methodologies → Parallel
algorithms; • Software and its engineering → Software
performance.

Keywords: Performance Variance; Anomaly Detection; Sys-
tem Noise

1 Introduction
Performance variance has been confirmed as a serious prob-
lem when running parallel programs on data centers [10],
supercomputers [22, 36], and cloud platforms [32, 41, 42],
which happens in different processes or threads within one
execution and between executions. As the execution time of a
parallel program is mostly determined by the slowest process
or thread, performance variance may slow down the whole
program evenwhen only one process or thread is affected. As
shown in Figure 1, the time spent on the same task with fixed
nodes varies greatly. Variance not only leads to performance
degradation or resource waste, but also makes applications’
behavior unstable and hard to understand.
Performance variance comes from various sources, in-

cluding OS interruption [11, 26], memory errors [48], cache
conflicts [34], network interference [23], and many other
hardware or software faults [25]. The varying symptoms
of performance variance make detection and diagnosis ex-
tremely difficult [25]. General approaches like rerunning,
tracing applications, and executing benchmarks during the
execution of applications can help detect variance. However,
such intrusive approaches introduce large overhead and
cannot be deployed in a production environment, which
is a serious limitation due to the poor reproducibility of per-
formance variance. Therefore, a lightweight online detection
and diagnosis approach is necessary to find out whether and

https://doi.org/10.1145/3503221.3508411


PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Zheng et al.

12.5
15.0
17.5
20.0
22.5
25.0

0 20 40 60 80 100
0.0

Ti
m

e 
(s

)

The N-th task submission

Figure 1. 100 repeated executions of 256-process NPB-CG on
the same group of nodes on the Tianhe-2A supercomputer.

why performance variance happens during the execution of
a running program.

To address this problem, we leverage an important obser-
vation that many parallel applications contain code snippets
that are repeatedly executed with fixed workload [44, 45, 48].
For example, applications, such as neural networks and im-
age processing, repeatedly execute certain math kernels
to perform the same computation (with different data) in
each iteration. These fixed-workload code snippets can be
used as benchmarks inside programs to detect and diagnose
performance variance at runtime since it is expected to take
unchanged execution time for all executions.
Although other works have tried compiler techniques

to identify fixed-workload snippets for variance detection,
they have major limitations regarding variance detection,
diagnosis, and usability. For the state of the art, vSensor [48],
1) it misses many fixed-workload snippets that cannot be
determined at compilation, and fails to handle complex alias
analysis [6]; 2) it cannot diagnose variance since it neglects
the crucial properties of fixed workload for variance diag-
nosis; 3) it is impractical for closed-source applications and
libraries, which are common in the production environment.
Therefore, how to detect variance without source code and
diagnose performance variance remains an open problem.
To overcome the limitations of existing approaches, we

have to solve two main challenges. 1) How to identify.
An application generates a continuous instruction flow at
runtime. We need to split the instruction flow into a set of
fragments (i.e., an execution of a code snippet) and identify
fragments with fixed workload at runtime. It is challenging
because only limited runtime information is available for
identification. 2) How to diagnose. The runtime of programs
does not contain much semantic information and the causes
of variance are numerous. In addition, although various
runtime performance data provides rich information, we
should keep a small overhead for production environments,
which limits the amount of collected data.

In this work, we propose Vapro, a light-weight perfor-
mance variance detection and diagnosis tool without re-
quiring source code, which is practical for production-run
parallel applications. Vapro is based on two important obser-
vations missed by previous works. First, many code snippets

have de facto fixed workload or only a few classes of work-
load, which are usable benchmarks inside programs but can
only be identified at runtime. Second, the comparability of
fixed workload makes it ideal for variance diagnosis. By com-
paring various performance information of fixed workload,
the differences among them can effectively expose the causes
of variance.
Based on the observations, we propose a series of novel

approaches. There are three main contributions in our work.

• We propose a new data structure, called State Transition
Graph (STG), to track program execution and reorganize the
collected dynamic fragments. With a fixed-workload frag-
ment identification algorithm executed on STG, we perform a
light-weight online analysis algorithm to detect performance
variance and quantify their influence.
• To diagnose variance without source code, we propose a

progressive diagnosis method based on a hybrid model with
a combination of variance breakdown and statistical analysis.
It takes both software and hardware into consideration and is
able to progressively locate fine-grained reasons with a small
overhead, which can effectively guide variance diagnosis.
• We evaluate Vapro on real applications with up to 2,048

processes to verify its efficacy on large-scale parallel appli-
cations. Vapro only introduces 1.38% performance overhead
on average and has a 30.0% higher detection coverage than
the state-of-the-art tool. Vapro detects variances resulting
from a hardware problem on Intel processors, distributed
filesystem, memory, and computing resource competition.
Experimental results show that optimizations based on the
crucial reports from Vapro reduce the standard deviations of
executions by up to 73.5% and bring a speedup up to 24.0%.

In this work, we focus on detecting and diagnosing the
performance variance caused by external environment, such
as the variance caused by hardware, OS, and communication
functions implemented in shared libraries. Vapro helps users
and system maintainers identify whether applications are
running with performance slowdowns caused by environ-
ment. For the detected variance, Vapro provides the most
possible reasons causing variance to help fix such problems.

2 Overview
Vapro is packaged as a dynamic library to perform data
collection and analysis. It requires no re-compilation or re-
link of applications. Figure 2 illustrates the workflow of
Vapro. Each step is described in detail:
1. Intercepting Vapro splits the running progress of an
application into a number of fragments (i.e., an execution of a
code snippet) by intercepting the external functions provided
by dynamic libraries. For a repeatedly executed code snippet,
it generates many fragments at runtime.
2. Building STG (§3.2) Vapro generates an STG as a repre-
sentation of the running progress of a program.



Vapro: Performance Variance Detection and Diagnosis for Parallel Applications PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Binary 
programs

Func invocation 1 

Fixed-workload fragments with performance data

External 
libraries

Func invocation 3 

1 Intercepting

2 Building STG

3 Performance Data Collection

4 Identifying Fixed-workload Fragments

Weighted equalization

Normalized performance

V
ar

ia
n

ce
 

D
et

ec
ti

o
n

5 Variance locating

O
n

lin
e

 a
n

al
ys

is
R

u
n

ti
m

e

Visualization 7

Data collection

Variance breakdown

P
ro

gr
es

si
ve

V
ar

ia
n

ce
D

ia
gn

o
si

s
6

Func invocation 2 

Causes analysis

Vapro library

Computation fragments Communication and IO fragments

Figure 2. Vapro overview.

3. Performance Data Collection (§3.3) Vapro records
runtime information for fragments, including elapsed time,
function parameters, and performance counters.
4. Identifying Fixed-workload Fragments (§3.4) Vapro
identifies fragments with fixed workload by clustering for
each STG edge and vertex.
5. Variance Detection (§3.5) Vapro automatically locates
performance variance by analyzing the clustering result.
6. Progressive Variance Diagnosis (§4) For detected vari-
ance, Vapro leverages a breakdown model and a statistical
method to progressively pinpoint the potential causes.
7. Visualization For variance detection, Vapro plots a heat
map to illustrate the normalized performance and reports
the region of variance and the quantified performance loss.
For variance diagnosis, Vapro breaks down the variance and
shows the impact and time duration for each factor.

3 Performance Variance Detection
Vapro is based on the observation of fixed workload. In this
section, we will introduce how Vapro locates performance
variance by analyzing fixed-workload fragments.

3.1 Fixed-workload Fragments

1 MPI_Comm_size();
2 ... // Omitted loops with similar characteristics
3 for (int i = 0; i < num_cols * num_vectors; i++)
4 y_data[i] *= alpha;
5 ...
6 MPI_Waitall();

Figure 3. A code snippet with fixed workloads in AMG [53].

A code snippet can generate several sets of fixed-workload
fragments. Figure 3 shows an example of a code snippet
between two MPI invocations. It is not a code snippet with a
fixed workload at compilation time, since the loop termina-
tion condition is determined by two non-constant variables.

However, although this snippet is executed hundreds of times
in a program execution, there are only 7 different workloads.
By distinguishing these different workloads at runtime and
dividing them into separate sets of fixed-workload fragments,
Vapro exploits code snippets that cannot be identified in
static analysis-based tools, such as vSensor [48].

3.2 State Transition Graph
To identify potential code snippets with fixed workload for a
parallel application, we first split the running progress of an
application into a set of fragments. We propose a new data
structure, named State Transition Graph (STG), to organize
these fragments. We give a formal definition of STG below.
Definition 1. State Transition Graph (STG) is a representa-
tion of the running progress of a parallel application. In an STG,
vertices record a program’s running states, while edges repre-
sent their transitions between different states. An application’s
running progress is partitioned into a set of fragments. From
one fragment to another, the program has a state transition.
STG is built during program executions. Vapro creates

a vertex for each running state and an edge if the program
transfers from one state to another. A key point of building
STG is to attach fragments to STG according to their running
states. In Vapro, we have two alternative approaches to
record a running state. They are based on call-site and call-
path information respectively. Using call-site information
as running states generates a context-free STG, while using
call-path generates a context-aware STG.

Sub-loop 0

Sub-loop 1

Sub-loop 2

MPI_Irecv MPI_Send MPI_Wait

MPI_Irecv MPI_Send MPI_Wait

MPI_Irecv MPI_Send MPI_Wait

MPI_Irecv MPI_Send MPI_Wait

Enter outer loop

Leave outer loop

Figure 4. A context-free STG.

Context-free STG In a context-free STG, the state of a frag-
ment is only determined by the call-site of the corresponding
invocation. We use the CG program of NPB benchmark [9] as
a running example to show how we build a state transition
graph. Figure 4 shows the context-free STG for a nested loop
in CG1. A vertex in Figure 4 represents a communication
call-site in the source code. Edges in Figure 4 represent
the transition between communication call-sites, i.e., the
computation code snippets among them. With a context-free
STG, all the communication and IO invocation fragments
from the same call-site are attached to the same vertex, and
all the computation fragments from the same computation
block are attached to the same edge.
1It is the cgitmax loop in cg.f:1170-1360.



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Zheng et al.

Context-aware STG Different from a context-free STG, a
context-aware STG takes the entire call stack of external
invocations into consideration. Invocations from the same
call-site may have different call-paths. For example, each
vertex or edge in Figure 4 corresponds to two vertices or
edges in a context-aware STG, since the code is executed in
both warm-up and real test stages with different call-paths.

3.3 Performance Data Collection
Performance Counters Performance counters, including
software counters such as the number of page faults and
context switches, and hardware counters like performance
events provided by performance monitor unit (PMU), are
valuable information for understanding performance. Vapro
collects runtime data through performance counters for fixed
workload identification and variance diagnosis. It adopts
different methods for computation, communication, and IO
workloads. We elaborate each on type as below.
Computation Workload The ideal way to classify the
workload of two computation fragments is by comparing
their instruction flows. However, its enormous overhead
makes it impossible for light-weight online analysis. We have
to find proxy metrics that are able to represent the workload
and remain stable even under performance variance.

0 10 20

PM
U 

co
un

t

With computation noise

0 10 20

With memory noise

TSC
TOT_INS

N-th execution

Figure 5. Performance data of fixed-workload computation
fragments in 16-process B-scale CG under the computation
and memory noises.

Figure 5 shows the values of TOT_INS (total number of
instructions) and TSC (timestamp counter, a high-precision
clock in CPU) for fixed-workload fragments in CG. We in-
ject CPU and memory noises 2 while CG is executing. The
results show that the TOT_INS is stable and insensitive to
the noises, while the TSC, i.e., the execution time, is affected.
Thus, Vapro takes TOT_INS as a crucial proxy metric for
computation workload analysis by default. Users are able to
specify other PMU metrics for analysis in Vapro as well, e.g.,
the number of load and store instructions, or cache miss rate.
Collecting more performance metrics improves the precision
of workload representation but introduces extra overhead.
Communication Workload Different from computation
workload, PMU metrics of CPU cannot directly reflect com-
munication workload. For example, if a receiving process
2In this work, the computation noise is generated by executing stress [5]
on the same CPU core of applications and the memory noise is generated
by executing stream [33] on the idle cores.

is waiting for its sending process via busy-waiting, it will
generate lots of memory access instructions. As a result, the
number of memory access instructions is proportional to
the waiting time rather than actual communication time. To
address this problem, Vapro uses communication invocation
arguments, including message size, the source and destina-
tions processes, and other invocation-specific information,
such as the scope of broadcast communication, instead of
PMU values to approximate communication workload.
Vapro records the elapsed time of each communication

invocation to analyze its performance. Although the elapsed
time can be affected by load imbalance and some other
factors, we take them as a whole into account since they
demonstrate communication performance in some degree.
For more precise timing on non-blocking communication,
users can also choose the communication libraries exposing
underlying communication time, such as the MPI library
with an enhanced profiling layer [49].
IO Workload Similar to communication workload, Vapro
collects function parameters to identify IO workload. Param-
eters that have an influence on IO performance are recorded,
such as sizes of data, file descriptors, and IO modes.

3.4 Identifying Fixed-workload Fragments

(d) STG edges with 
fixed workload

Recv

Send

(c) Workload clustering

TO
T_

IN
ST

Other PMU metrics
(b) STG edge with 
different workload

Recv

Send

(a) Source code

Send(…);
Computation 
with two classes 
of workload;
Recv(…);

1
2

3

Figure 6. Clustering fragments by their workload. The
workload of fragments is represented with different shapes.

So far, we have attached fragments with runtime informa-
tion to STG. However, as shown in Figure 6b, fragments on
an STG edge or vertex can have various workload patterns,
which cannot be directly used by Vapro for variance analysis.
To identify fragments with fixed workload, we propose a
light-weight approach based on workload clustering. Al-
though Figure 6 only shows the clustering of computation
fragments on edges, we similarly identify fixed-workload
communication and IO fragments on STG vertices.

We represent all kinds of workload with a workload vec-
tor which contains normalized performance metrics and/or
invocation arguments, and then cluster these workload vec-
tors. Vapro has to cluster millions of fragments collected at
runtime without any priori knowledge, such as the number
of clusters (i.e., the number of different workloads). A large
number of algorithms have been studied to decide the opti-
mal number of clusters during clustering, such as hierarchical
clustering and minimum radius based automatic k-means
clustering [55]. However, they have high time complexities
of at least𝑂 (𝑛2) [12] and𝑂 (𝑛𝑑𝑘+1) [27], where 𝑘,𝑑, 𝑛 are the



Vapro: Performance Variance Detection and Diagnosis for Parallel Applications PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

number of clusters, dimensions, and vectors to be clustered.
Most of these algorithms require complex computation (non-
linear time complexity in the number of vectors) which is not
suitable for light-weight performance analysis, especially for
production-run parallel applications.
Clustering Algorithm To address this problem, we present
an ad-hoc clustering algorithm (Algorithm 1) leveraging prop-
erties of the performance metrics. The Euclidean norm, i.e.,
the length of vectors, is used to classify different workload
vectors. This is because a smaller norm of workload vectors,
such as a smaller number of cache misses, usually means
better performance. Performance variance usually enlarges
these metrics rather than decreasing them. For metrics that
are the larger the better, we convert them into the opposite
metrics. Then, for fixed-workload fragments, their norms
have a concentrated distribution near the smallest norm
of all data, which indicates the stable performance. After
selecting the least norm of unprocessed fragments, we find
all fragments whose distance from the fragment with the
least norm is smaller than a predefined threshold (5% in
our implementation). For example, computation fragments
within 1000-1050 instructions and 200-210 load and store
instructions are put into the same cluster. The computational
complexity of this algorithm is linear with respect to the
number of workload vectors without regard to the sorting,
so it introduces a small overhead. This will be shown in the
evaluation in §6.2.

Algorithm 1: Clustering algorithm for identifying
fixed workload snippets.

1 foreach edge/vertex in an STG do
2 Sort all fragments attached to this edge/vertex

according to the norms of workload vectors
3 while unprocessed fragments exist do
4 Select the fragment with the smallest norm
5 Find similar fragments whose distance from

the selected fragment is less than a
predefined threshold

6 Move them into a new cluster
7 end
8 Report clusters with too few fragments
9 end

In Vapro, we do not strictly require the workload in the
same cluster to be identical and tolerate a small difference.
Themain reason is the inherent error of PMUmechanism [51].
Additionally, Vapro aims to detect performance variance
that has a significant performance impact, so the small dif-
ference of workload does not prevent detection for severe
performance variance. During the post-processing (Line 8),
clusters with too few fragments (less than 5 in our current
implementation) but long execution time will be reported,
which means that the corresponding execution path is not

executed repeatedly. Users need to pay attention to whether
these fragments represent abnormal performance.

3.5 Performance Variance Detection
After workload clustering, Vapro uses these fixed-workload
fragments to detect performance variance. For a parallel
application, Vapro detects performance variance both within
a single process (in the temporal dimension) and across
multiple processes (in the spatial dimension).

Ex
ec

u
ti

o
n

 t
im

e

Long time fragments

N
o

rm
al

iz
ed

p
er

fo
rm

an
ce

Performance variance

Time

Low performance

(b) performance of fragments (c) overall performance(a)

Figure 7. Detecting variance from multiple fragment clus-
ters. Circles and triangles mean fragments with different
workload and lines mean their normalized performance.

Intra-processDetection For fragmentswith the samework-
load, Vapro calculates the normalized performance for every
fragment. As shown in Figure 7b, fragments with different
workloads are analyzed separately. For each fragment in
a cluster, Vapro normalizes their performance according
to their time consumption. The performance of the fastest
fragment is normalized to 1, and the others are between 0
and 1. Then, the normalized performance of both clusters
is merged to produce an overall performance report. To re-
port the performance of profiled programs concisely, Vapro
merges the normalized performance from all clusters for
computation, network, and IO, respectively.

Application 
processes

Server 
processes

Transfer data to server processes

Periodically 
inter-process 

analysis
Overlapped sliding windows

Figure 8. Periodic analysis for multiple processes.

Inter-processDetection Since different processes and threads
often have similar tasks for parallel applications, Vapro
detects inter-process variance by analyzing fixed-workload
fragments from multiple processes or threads. As shown in
Figure 8, Vapro uses dedicated server processes for inter-
process analysis. The server processes collect performance
data from clients periodically. Each time, the server processes
analyze the data for the last time window. The periods of
analysis windows are overlapped so that the analyzed results
from different periods can be concatenated together.
Vapro servers report normalized performance as a heat

map, where performance variance is represented by light-
colored blocks. Figure 9 shows an example of multi-threaded



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Zheng et al.

0 5 10 15 20 25
Time (s)

0

4

8Th
re

ad
 ID

0.0

0.5

1.0

Co
m

pu
ta

tio
n

Pe
rfo

rm
an

ce

Figure 9. 8-thread PageRank under a memory noise.

PageRank under injected memory noise, where the vertical
axis denotes different processes or threads and the horizontal
axis denotes time progress.
Variance Locating Vapro automatically pinpoints the vari-
ance by the region growing method. It regards a contiguous
region with normalized performance below a threshold (0.85
in our implementation) in the heat map as a possible vari-
ance. All possible variance is reported to users according
to their impact on performance, which is calculated by the
normalized performance. Users are able to select regions of
interest on the heat map for diagnosis as well.
Sampling Similar to most performance monitoring tools,
sampling is an optional approach for Vapro to trade off
between overhead and accuracy. By skipping recording part
of external invocations, Vapro dynamically achieves a de-
sired balance between overhead and the detection ability.
Heuristic sampling policies can be adopted by Vapro, such
as skipping short fragments instead of long ones, to maintain
high detection coverage with low overhead.

4 Performance Variance Diagnosis
In this section, we describe how Vapro automatically diag-
noses the detected variance. Based on a variance breakdown
model (§4.1), the execution time is broken down into several
factors(§4.2). Vapro adopts a progressive analysis method to
effectively locate the causes of variance (§4.3).

4.1 Variance Breakdown Model
Vapro leverages the crucial comparability of fixed work-
load to diagnose variance. Since fixed-workload fragments
without performance variance should have the same exe-
cution time and similar results of performance counters,
differentiating performance counters can reveal the reasons
for variance. In this work, we only use performance counters
inside processors and OS to illustrate our approach. Even
though, the sources of variance vary and hundreds of coun-
ters exist. However, only a small number of counters can be
simultaneously collected due to overhead constraints.
To diagnose the variance with a small overhead, we pro-

pose a variance breakdown model to guide the direction of
diagnosis. As shown in Figure 10, it covers both hardware
and software variance. A node in Figure 10 represents a factor
accounting for partial execution time, which corresponds to
certain hardware or software performance counters. Nodes

Computation time of fixed-workload fragments

FB B
S

R
et

ir
in

g

Backend bound

C
o

re
 

b
o

u
n

d

Memory bound

L1 
bound

L2 
bound

L3 
bound

Suspension

DRAM 
bound

Page fault 
(PF)

Soft
PF

Hard
PF

Context switch 
(CS)

Volun-
tary CS

Si
gn

al

Involun-
tary CS

Factors quantified in time Factors unquantified in time

Process is running Process is suspended

S1

S2

S3

Figure 10. Variance breakdown model. Nodes with vertical
text indicate that the underlying fine-grained factors are
omitted. FE and BS mean frontend bound and bad specula-
tion.

are organized hierarchically according to the inclusion rela-
tion of their execution and form several stages for variance
diagnosis. The model first divides computation time into
five stage-one (S1) factors. For the time when processes are
running on CPUs, the variance breakdown model divides it
into four S1 factors according to the top-down structure of
PMU events [54]. For example, the S1 factor backend bound
represents the time spent on computation and memory ac-
cess, i.e., the S2 factors core bound and memory bound in
Figure 10. These S2 factors can be further broken down into
S3 factors. For the process suspension caused by OS, its
time is included in the S1 factor of suspension. Similarly,
suspension can be further divided into fine-grained factors,
such as page faults and other common OS events, which
is extendable for covering more factors in diagnosis. By
differentiating the time on each factor for fixed-workload
fragments, Vapro quantifies the variance caused by each
factor.

4.2 Quantifying Time of Factors
To compare the impact of different factors on variance diag-
nosis, Vapro quantifies the time cost for each factor by col-
lecting corresponding performance counters. Performance
counters have different units and Vapro classifies them ac-
cording to whether they can be directly quantified in time.
In Figure 10, the factors with background color are directly
quantifiable in time, such as how long a process spends on
CPU frontend bound 3. With the help of well-designed hard-
ware PMU events, a top-down time breakdown is feasible
for factors in CPUs [54]. Since this breakdown relies on
formulas according to the meaning of PMU events, we call
this a formula-based method.
However, there are still many factors that cannot be di-

rectly quantified in time. For example, OS provides users with
the count of page faults. But we cannot directly calculate
the time of page faults according to this data. We propose
an OLS-based (ordinary least squares) statistical method to

3On the Intel Ivy Bridge CPUs, the time fraction of frontend
bound is equal to IDQ_UOPS_NOT_DELIVERED.CORE / (4 *
CPU_CLK_UNHALTED.THREAD)



Vapro: Performance Variance Detection and Diagnosis for Parallel Applications PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

estimate the time of unquantified factors for variance diag-
nosis. Vapro separately processes fixed-workload fragments
to leverage their comparability. For each cluster, all factors
are normalized to the range of 0 to 1. Then, Vapro checks the
multicollinearity of factors by the Farrar-Glauber test [21].
In the multivariate OLS, multicollinearity means that one
explanatory variable can be linearly correlated with others.
This makes the estimated coefficients unstable and possibly
reduces the precision of results. Since some factors are re-
lated to each other, such as that a page fault in user space
is also a context switch, multicollinearity tends to occur
in our analysis. Vapro removes the multicorrelated factors
one-by-one until multicollinearity does not exist in OLS.

Vapro takes execution time as the explained variable and
factors as explanatory variables for OLS. For the OLS results,
only factors with a significant influence (𝑝 < 0.05) on the
time are considered in the following diagnosis. After scaling
the coefficients to recover the normalization, we obtain the
estimated time impact of each factor. For factors excluded
from OLS due to multicollinearity, their coefficients are es-
timated by their multicollinear relationship. Thus, Vapro
calculates the time of each factor to facilitate the performance
diagnosis in §4.3.

To verify this OLS-based statistical method, we compare it
with the formula-basedmethod. For the injected noise, which
will be shown in Figure 11, the impact of backend bound and
suspension estimated by the formula-based method (89.4%
and 4.9%) is consistent with the statistical method (86.6% and
3.1%).

4.3 Progressive Variance Diagnosis
Vapro adopts a progressive diagnosis method based on the
above variance breakdown model, which progressively lo-
cates major factors in the current stage and diagnoses its
fine-grained factors. The major factors are decided according
to their contribution to variance, which means how much
slowdown a factor causes. To calculate the contribution,
fragments costing more than 𝑘𝑎 times of the fastest fragment
are regarded as abnormal fragments (1.2 is used in our imple-
mentation) and the others are normal ones. Vapro takes the
average time of each factor in normal fragments as a refer-
ence value. Thus, the contribution of a factor is the difference
between the time of this factor in abnormal fragments and
the reference value. By summing up the contribution of all
abnormal fragments, we obtain the contribution of a factor
during a period of execution.
Figure 11 shows that fixed-workload fragments are in-

jected with computing noise and memory contention using
the samemethod in Figure 5. Since the noisesmainly increase
two S1 factors, suspension and backend bound, we take them
as axes and omit the other three S1 factors. The average of
the normal fragments is the origin in Figure 11. Thus, the
coordinates of fragments mean the contribution of factors.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Backend bound (pipeline slot) 1e8

0

2

4

Su
sp

en
sio

n
(p

ip
el

in
e 

slo
t)

1e7

BE
SP
BE+SP
Normal

Figure 11. Variance breakdown of the fixed-workload frag-
ments of 16-process CG under concurrent computing noise
and memory contention. Each point represents a fragment
and itsmarker indicates themajor factor resulting in variance
for fragments under variance. BE and SP mean backend
bound and suspension. The dashed line shows the region
boundary of different major factors.

Vapro selects the factors contributing more than a thresh-
old (0.25 in our implementation) of overall variance as ma-
jor factors for further diagnosis. Then, the server notifies
clients to collect data for fine-grained factors. This diag-
nosing process repeats until the most fine-grained factors
are determined. In such a progressive way, Vapro requires
only a small number of concurrently active performance
counters and thus imposes low overhead. As a trade-off, this
method costs 𝑛 client-server data transferring periods and 𝑛
server analysis latencies to locate an S𝑛 factor in the variance
breakdown model. Compared with the long execution time
of applications in the production environment, this diagnosis
method reacts efficiently.
Vapro reports the impact and duration of each factor to

users. The impact of a factor is calculated by summing up
its contribution from all abnormal fragments. The duration
of a factor is the total time of abnormal fragments whose
major factors include it. For example, in the case of Figure 11,
the process suspension accounts for 60.3% of the slowdown
and influences 24.2% of the execution time. Previous noise
detection tools cannot break down variance for analysis due
to the lack of the precondition of fixed workload.

5 Implementation
In this section, we discuss the implementation details about
howVapro records performance data into STG and processes
performance data for a parallel application.
Intercepting External Functions We leverage runtime
symbol look-up interfaces on Linux, i.e., dlsym, and an envi-
ronment variable of dynamic linkers, LD_PRELOAD, to trans-
parently intercept these functions. Currently, Vapro sup-
ports the following external functions.

• Communication: MPI communications functions.
• IO: POSIX IO interfaces and MPI-IO functions.
• Multithreading: main POSIX pthread interfaces.
• User-defined explicit invocations.



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Zheng et al.

Although most parallel applications heavily rely on exter-
nal libraries, some of them execute with very few external
function invocations for a long period. For these programs,
Vapro inserts user-defined invocations into programs with
the support of Dyninst [13], a binary rewriting tool. We
insert explicit invocations at some key points, such as the
entry and exit of functions. The binary exponential backoff
strategy [24] is applied to adapt the frequency of profiling
data collection and limit the overhead of Vapro.
PerformanceDataAnalysisVapro provides amulti-threaded
server for online variance detection and diagnosis. For large-
scale parallel applications, Vapro supports concurrent data
collection with multiple servers to improve throughput. By
equally assigning parallel processes to different servers, servers
can achieve load balance. Further optimizations are feasible
with data collection frameworks such as MRNet [15], which
organizes servers into a tree-like structure.

6 Evaluation
6.1 Evaluation Setup
Vapro is implemented as a dynamic library and should be
preloaded at program executions. We collect TOT_INS for
workload clustering and evaluate it with real cases.
PlatformWe conduct the multi-process evaluation on the
Tianhe-2A supercomputer, whose nodes have dual 12-core
Intel Xeon E5-2692 v2 processors and 50 Gbps networks. The
multi-threaded applications are evaluated on a server with
dual 12-core Intel E5-2670 v3 processors.
ApplicationsWe evaluate (1) BERT [1], an efficient infer-
ence framework for the popular natural language process-
ing model BERT, (2) PageRank [4], a multi-threaded graph
computing application, (3) WordCount [2], a MapReduce-
style program, (4) AMG [53], a parallel algebraic multigrid
program solver, (5) CESM [30], the state-of-the-art climate
simulator with more than 500,000 lines of code, (6) 6 pro-
grams from the PARSEC suite [14] which covers the applica-
tions of image processing, finance, and hardware design, and
(7) 7 programs from the NPB [9] benchmarks with E-class
problem size. These programs are from diverse fields and
cover both multi-threading and multi-processing.

6.2 Overhead and Detection Coverage
Overhead Table 1 shows the performance overhead and
detection coverage of Vapro and the state-of-the-art vSen-
sor [48]. Since vSensor does not support multi-threaded ap-
plications, we present the evaluating results of multi-process
applications in detail. The overhead of Vapro is small since
Vapro is triggered only when external functions are invoked,
which are time-consuming communication and IO opera-
tions. Therefore, the overhead of Vapro is bounded by a
small ratio of the cost of external function invocations. Vapro
with context-aware STG has higher overhead (3.81%) than
that with context-free STG (1.80%) due to the costly call

stack backtracing operation for the call-path information.
Although both Vapro and vSensor introduce low perfor-
mance overhead, vSensor, as a tool relying on source code
analysis, fails to work on complex applications with large
codebases, such as CESM.
Vapro is configured with a 15-second reporting period

and one server process serves 256 application processes.
The overhead of Vapro servers is only 0.4% (1/256) of the
resources used by applications. For the storage overhead,
Vapro generates 12.8 or 47.4 KB data per second for one
thread or process on average. Since detailed performance
data can be periodically analyzed and merged as normalized
performance, Vapro has a small storage requirement.

2 3 4

500

508

516Pr
oc

es
s I

D

Vapro

2 3 4

vSensor

0.00

0.25

0.50

0.75

1.00

Co
m

p.
 P

er
fo

rm
an

ce

Time (s)
Figure 12. 1024-process SP under a computing noise.

Detection Coverage Since only the variance during the
execution of fixed-workload fragments is detected, we define
detection coverage as the ratio of time on repeated fixed-
workload fragments to total execution time. To exemplify
the importance of coverage, we compare different tools for
the C-scale NPB SP program under the computing noise that
lasts one second. As shown in the red circles in Figure 12,
Vapro accurately detects the 50% performance loss caused by
OS process scheduling, which equally divides CPU time for
the application and the noise process. However, vSensor in-
correctly reports a 90% performance loss lasting 1/10 second,
since its detection coverage (8.7%) is significantly lower than
Vapro (36.4%). The low coverage causes that vSensor cannot
collect enough fragments to correctly show the impact of
context switch caused by OS scheduling.
The detection coverage of Vapro exceeds 70.0% and out-

performs vSensor by 30.0% on average, which is critical for
the precision of detection. More importantly, Vapro works
on programs with runtime fixed workload, such as AMG and
EP, which static analysis-based vSensor cannot handle.
In Table 1, context-free STG outperforms context-aware

STG with 10.8% higher average coverage and smaller over-
head. This is because workload clustering overcomes the
disadvantage of context-free STG. According to these eval-
uating results, context-free STG is more favorable, and we
use it in the following experiments.

6.3 Verification of Fixed Workload Identification
To verify the fixed workload identification algorithm, we
record the exact execution paths and compare them with the
clustering results of Vapro. We evaluate four applications
with medium codebases. All loops and branches in their hot



Vapro: Performance Variance Detection and Diagnosis for Parallel Applications PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Table 1. Performance overhead and detection coverage (with 2048 and 1024 processes for CESM and the other multi-process
applications, and 16 threads for multi-threaded programs). CA and CF mean Vapro with context-aware and context-free STG.

Multi-process
Applications

Overhead (%) Coverage (%) Multi-threaded
Applications

Overhead (%) Coverage (%)
vSensor CA CF vSensor CA CF CF CF

AMG 2.02 1.34 0.37 0.00 57.5 66.4 BERT 0.75 72.8
CESM N/A 8.06 0.02 N/A 33.8 47.7 PageRank 2.70 47.3

N
PB

BT 0.22 2.07 2.00 80.1 83.7 86.2 WordCount 0.41 74.1
CG 0.00 0.29 0.72 19.5 78.3 78.2

PA
RS

EC

FFT 0.16 66.9
EP 0.00 1.04 1.04 0.0 87.5 87.5 blackscholes 0.00 84.9
FT 2.21 4.73 5.13 93.2 72.0 72.2 canneal 2.63 81.3
LU 1.12 8.56 2.88 65.9 97.4 97.7 ferret 0.02 79.0
MG 1.03 6.99 2.86 76.2 5.1 77.7 swaptions 0.00 92.4
SP 1.22 1.19 1.23 29.4 66.6 66.3 vips 1.85 96.7

Mean 0.98 3.81 1.80 45.5 64.7 75.5 Mean 0.95 74.1

Table 2. Verification of fixed workload identification. C, H,
and V mean completeness, homogeneity, and V-Measure (the
harmonic mean of C and H) scores. Programs are executed
with 16 processes or threads.

Applications Number of
fragments C H V

CG 3801 1.00 1.00 1.00
FT 640 1.00 1.00 1.00
EP 16 1.00 1.00 1.00

PageRank 672 1.00 0.74 0.85

spots, which cover more than 80% of the execution time, are
instrumented for recording execution paths.
Table 2 shows the clustering results by the homogene-

ity, completeness, and V-Measure scores [39]. All the com-
pleteness scores are equal to one, which means that frag-
ments with the same workload are in the same cluster. For
PageRank, the homogeneity score (0.74) indicates that some
fragments with different workloads are clustered together.
By inspecting its source code, we find that some fragments
with approximately equal workload (e.g., a common 100000s-
iteration loop with only less than twenty different arithmetic
operations) are put into one cluster. Since these workload
differences are small, such mixed clusters do not hinder
Vapro from detecting variance which significantly impacts
performance.

6.4 Comparing with Profiling Tools
We generate parallel computational noises to interfere with
processes. After 2048-process E-scale CG is started, comput-
ing noises are injected into two different computing nodes.
Figure 13 shows that Vapro accurately locates the perfor-
mance variance (two white boxes) and reports a 42.8% com-
putation performance loss. With the regression based on the
variance breakdown model, Vapro reports that involuntary
context switches have a significant negative influence (𝑝 <

0.001) on performance.
The execution time breakdown provided by profiling tools

is often misleading. We take mpiP [50] as an example, whose

0 10 20 30 40 50 60
Time (s)

900

1000

1100

1200

Pr
oc

es
s I

D

0.00

0.25

0.50

0.75

1.00

Co
m

p.
 P

er
fo

rm
an

ce

Figure 13. Detection results of 2048-process CG under
software noises by Vapro.

900 1000 1100 1200
0

20

40

60

80

100

Ti
m

e 
(s

)

Without noise

Computation
Communication

900 1000 1100 1200
0

20

40

60

80

100
With noise

Computation
Communication

Process ID

Figure 14. Results of 2048-process CG by mpiP.

result summarizes the computation time and communication
time. The result of mpiP in Figure 14 shows that the commu-
nication time increases and the computation time remains
the same, which indicates a network problem. mpiP high-
lights the significant increase in communication time caused
by dependence, but omits the relatively small changes in
computation time. However, with the help of fixed-workload
fragments, Vapro catches the nuanced change and diagnoses
it. For vSensor, it cannot pinpoint the source of variance
although the variance is detected.

6.5 Case Studies
In this subsection, we present three case studies covering
variance caused by hardware cache variance, memory prob-
lem, and IO variance.

6.5.1 Detection of a Hardware Bug. In this case, we
evaluate High Performance LINPACK (HPL) [20] with 36
processes on a computing node with dual 18-core Intel Xeon



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Zheng et al.

Gold 6140 processors. All processes are bound to the ded-
icated processor cores to mitigate the interference of OS
scheduling. In our test, HPL usually has a stable performance
with performance variation of less than 2%, since it has
relatively little communication. However, Vapro captures an
abnormal execution with 22.2% longer execution time than
the normal run.

0 5 10 15 20 25 30 35 40
Time (s)

0

10

20

30Pr
oc

es
s I

D

0.7

0.8

0.9

1.0

Co
m

pu
ta

tio
n

Pe
rfo

rm
an

ce

Figure 15. Detection results of an HPL execution under
hardware variance detected by Vapro.

Figure 15 shows the normalized performance reported
by Vapro. From the figure, we can find that there is a large
performance variance among processes, especially for pro-
cesses on the second processor socket, whose process IDs are
between 16 and 31. With the progressive variance diagnosis,
Vapro reports that 96.6% of the slowdown results from the
backend bound in the CPU pipeline. The fine-grained break-
down shows that the L2 and DRAM bound (48.2% and 38.0%
of the slowdown) are mainly responsible for this variance.
This result implies that the extra cache misses and memory
accesses impair the performance. By recording several low-
level micro-architecture PMU events related to cache and
repeating the execution, we verify that this variance is corre-
lated with a PMU metric counting the number of CPU cycles
stalling on L2 cache miss4. This phenomenon of variance
matches a severe Intel processor hardware bug related to the
L2 cache [28, 34], which makes data in the L2 cache evicted
and randomly generates significant slowdowns.

To mitigate this problem, we leverage the huge page mech-
anism to decrease the frequency of problematic L2 cache
evictions. Figure 16 shows the cumulative distribution func-
tion of the HPL performance. With the original page size of
2 MB, significant performance degradation is shown on the
left side of the figure. After using 1 GB pages, the standard
deviation of the execution time is reduced by 51.3%.

0 20 40 60 80 100
Percentile (%)

840
860
880
900
920
940

Pe
rfo

rm
an

ce
(G

FL
OP

S)

1GB Page
2MB Page

Figure 16. Distribution of HPL performance.
4The event name is CYCLE_ACTIVITY.STALLS_L2_MISS

For this problem, which influences all programs on the
problematic processors, Vapro provides an online detection
and diagnosis approach based on comparing fixed-workload
fragments from different processes. Since the inter-process
comparison fails without the presupposition of fixed work-
load, other profiling tools, such as perf [17], cannot achieve
it. vSensor fails in this case as well since it is a closed-
source application provided by Intel. Vapro not only fa-
cilitates an early stop for the affected programs, but also
avoids time-consuming re-executions for diagnosing this
non-deterministic problem.

0 20 40 60 80 100
Time (s)

40

60

80Pr
oc

es
s I

D

0.8

0.9

1.0

Co
m

pu
ta

tio
n

Pe
rfo

rm
an

ce

Figure 17. Detection results of computation results for 128-
process Nekbone by Vapro.

6.5.2 Detection of Memory Problem. In this case, we
execute the 128-process Nekbone [3], a computational fluid
dynamics problem solver, on Tianhe-2A. As shown in Fig-
ure 17, Vapro locates processes on a node which is slower
than others. By breaking down the variance, 97.2% of the
slowdown is caused by backend bound, and nearly all of it
is contributed by the memory bound. With memory tests,
we find that the memory bandwidth of this node is 15.5%
lower than others. By replacing this problematic node, it
yields a speedup of 1.24×. We have reported this finding to
the system administrator.
One could argue that this variance can be detected by

benchmarks in advance, but as shown in the previous case
and Figure 1, variance happens even when programs are
executed on the same nodes.

25 30 35 40 45 50 55 60
Time (s)

0

5

10Pr
oc

es
s I

D

0.00

0.25

0.50

0.75

1.00

IO
 P

er
fo

rm
an

ce

Figure 18. Detection results of IO performance for 512-
process RAxML by Vapro.

6.5.3 Detection of IO Performance Variance. The third
case study focuses on RAxML [46], a popular phylogenetic
analysis application. We execute this application with 512
processes and observe a significant execution time variance,
which ranges from 41.1 to 68.0 seconds for 10 consecutive
executions. Vapro suggests that both computation and com-
munication performance are stable. However, as shown in
Figure 18, the IO performance variance is reported by Vapro



Vapro: Performance Variance Detection and Diagnosis for Parallel Applications PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

for the first process, which has significantly lower perfor-
mance than the others. Vapro identifies the most varied
fixed-workload IO fragments and plots their execution time
in Figure 19.

0 100 200 300 400 500
N-th IO

0.00

0.02

0.04

Ti
m

e 
(s

)

Read
Write

Figure 19. IO performance of consecutive read and write
operations with fixed workload in RAxML.

Following this important hint, we further investigate RAxML
and find that it merges data from multiple small files. Thus,
its performance is vulnerable to the variance of the shared
distributed file system. To reduce the distributed file system
access, we implement a simple file buffer for these files. This
optimization yields a 17.5% speedup and a 73.5% reduction
in the standard deviation of overall execution time. In this
case, although we cannot collect performance counters from
the distributed file system due to security reasons, Vapro
still efficiently filters out irrelevant factors to provide crucial
hints for the solution.

7 Related Work
Detecting variance by general approaches There have
been several general approaches for performance variance
detection and diagnosis. Micro-benchmark is a classic ap-
proach to detect system variance [26, 32]. But running bench-
marks is intrusive, it interferes with other applications and
is not suitable for online production detection. The major
drawback of tracing is its prohibitive data volume and per-
formance overhead [29, 52, 56]. Program profiling [50] often
discards time sequence information so it is difficult to detect
performance variance in the time dimension. Although vari-
ance can be detected by performance modeling [38], building
accurate models is extremely difficult.
Detecting variance caused by environment On detecting
performance variance, an effective approach is differenti-
ation, which means determining the processes or periods
with different behavior. For works based on fragment-level
fixed workload differentiation, vSensor [48], identifies such
fixed-workload code snippets with static analysis to detect
variance. However, relying on source code analysis, vSensor
is impractical for proprietary programs and misses snippets
with de facto fixed workload which cannot be determined at
compilation. Shah [43] estimated the impact of external inter-
ference on bulk-synchronous MPI applications by comparing
fixed-workload segments. However, neither of this work nor
vSensor can diagnose the causes of variance. In contrast,

Vapro diagnoses variance and provides crucial guides to
solve it, which is not supported by these works.
Many research works are able to detect or diagnose the

performance variance with differentiation in other methods.
IASO [37] detects fail-slow, i.e., extremely severe perfor-
mance variance, by monitoring the response time of requests.
X-ray [8] leverages performance summarization and deter-
ministic replay to locate basic-block-level causes of perfor-
mance anomalies. UBL [18] predicts performance anomalies
in the cloud by unsupervised learning. VarCatcher [57] de-
tects and analyzes variance patterns by the parallel charac-
teristics vector. Compared with these works, Vapro is able
to locate, quantify and diagnose the variance online, which
cannot be covered by a single one of the above works.
Detecting variance caused by applications Software bugs
lead to performance variance as well. STAT [7] detects the
root cause of the programhanging problem by finding out the
processes with a different call-stack. AutomaDeD [31] uses a
Markov model to find bugs by comparing their control-flow
behavior history and finding the least-progress process. Su
et al. [47] identifies several performance bugs by recording
function-level variance. PerfScope [19] analyzes system call
invocations to locate candidate buggy functions. Sahoo et
al. [40] finds software bugs by monitoring program invari-
ants. Other tools such asHytrace [16] and PRODOMETER[35]
focus on this topic as well. Orthogonal to these works, Vapro
focuses on the diagnosis of performance variance caused by
the external environment instead of functional and perfor-
mance bugs inside applications.

8 Conclusion
We present Vapro, an online light-weight performance vari-
ance detection and diagnosis tool for production-run parallel
applications. We combine a novel data structure to dynami-
cally identify fixed workload for variance detection. Based
on the variance breakdownmodel, Vapro diagnoses variance
and reports the most possible reasons that the previous tools
cannot realize.

Acknowledgments
We would like to thank the anonymous reviewers for their
insightful comments. This work is supported by National Key
R&D Program of China (2021YFB0300300), National Natural
Science Foundation of China (U20A20226), Beijing Natural
Science Foundation (4202031), SOAR fellowship, University
of Sydney faculty startup funding, Australia Research Coun-
cil (ARC) Discovery Project (DP210101984), China Postdoc-
toral Science Foundation (2020TQ0169), ShuiMu Tsinghua
Scholar fellowship (2019SM131), Tsinghua University Initia-
tive Scientific Research Program (20191080594). Jidong Zhai
is the corresponding author of this paper.



PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Zheng et al.

References
[1] [n.d.]. The cuBERT framework. https://github.com/zhihu/cuBERT.
[2] [n.d.]. The MapReduce framework. https://github.com/sysprog21/

mapreduce.
[3] [n.d.]. The Nekbone program. https://github.com/Nek5000/Nekbone.
[4] [n.d.]. The parallel PageRank program. https://github.com/nikos912000/

parallel-pagerank.
[5] [n.d.]. stress. https://packages.debian.org/buster/stress

[6] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. [n.d.].
Compilers: Principles, Techniques, and Tools (2nd Edition). Addison-
Wesley Longman Publishing Co., Inc.

[7] Dorian C Arnold, Dong H Ahn, BR De Supinski, Gregory Lee, BP
Miller, and Martin Schulz. 2007. Stack trace analysis for large scale
applications. In 21st IEEE International Parallel & Distributed Processing
Symposium (IPDPS’07), Long Beach, CA.

[8] Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: Automat-
ing root-cause diagnosis of performance anomalies in production
software. In Presented as part of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’12). 307–320.

[9] D. Bailey, T. Harris, W. Saphir, R. V. D. Wijngaart, A. Woo, and M.
Yarrow. 1995. The NAS Parallel Benchmarks 2.0. NAS Systems Division,
NASA Ames Research Center, Moffett Field, CA.

[10] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron.
2011. Towards predictable datacenter networks. In Proceedings of the
ACM SIGCOMM 2011 Conference. 242–253.

[11] Pete Beckman, Kamil Iskra, Kazutomo Yoshii, and Susan Coghlan. 2006.
The influence of operating systems on the performance of collective
operations at extreme scale. In 2006 IEEE International Conference on
Cluster Computing. IEEE, 1–12.

[12] P. Berkhin. 2006. A Survey of Clustering Data Mining Techniques. In
Grouping Multidimensional Data: Recent Advances in Clustering, Jacob
Kogan, Charles Nicholas, and Marc Teboulle (Eds.). Springer.

[13] Andrew R Bernat and Barton P Miller. 2011. Anywhere, any-time
binary instrumentation. In Proceedings of the 10th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools. 9–16.

[14] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th international conference on
Parallel architectures and compilation techniques (PACT’08). 72–81.

[15] Michael J Brim, Luiz DeRose, Barton P Miller, Ramya Olichandran,
and Philip C Roth. 2010. MRNet: A scalable infrastructure for the
development of parallel tools and applications. Cray User Group (2010).

[16] Ting Dai, Daniel Dean, Peipei Wang, Xiaohui Gu, and Shan Lu.
2018. Hytrace: a hybrid approach to performance bug diagnosis in
production cloud infrastructures. IEEE Transactions on Parallel and
Distributed Systems (TPDS) 30, 1 (2018), 107–118.

[17] Arnaldo Carvalho De Melo. 2010. The new linux perf tools. In Slides
from Linux Kongress, Vol. 18. 1–42.

[18] Daniel Joseph Dean, Hiep Nguyen, and Xiaohui Gu. 2012. Ubl:
Unsupervised behavior learning for predicting performance anomalies
in virtualized cloud systems. In Proceedings of the 9th international
conference on Autonomic computing. 191–200.

[19] Daniel J Dean, Hiep Nguyen, Xiaohui Gu, Hui Zhang, Junghwan
Rhee, Nipun Arora, and Geoff Jiang. 2014. Perfscope: Practical online
server performance bug inference in production cloud computing
infrastructures. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC’14). 1–13.

[20] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. 2003. The
LINPACK benchmark: past, present and future. Concurrency and
Computation: practice and experience 15, 9 (2003), 803–820.

[21] Donald E Farrar and Robert R Glauber. 1967. Multicollinearity in
regression analysis: the problem revisited. The Review of Economic
and Statistics (1967), 92–107.

[22] Kurt B Ferreira, Patrick GBridges, Ron Brightwell, and Kevin T Pedretti.
2013. The impact of system design parameters on application noise
sensitivity. 2010 IEEE International Conference on Cluster Computing
16, 1 (2013), 117–129.

[23] Yifan Gong, Bingsheng He, and Dan Li. 2014. Finding constant
from change: Revisiting network performance aware optimizations
on iaas clouds. In SC14: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 982–993.

[24] Jonathan Goodman, Albert G Greenberg, Neal Madras, and Peter
March. 1988. Stability of binary exponential backoff. Journal of the
ACM (JACM) 35, 3 (1988), 579–602.

[25] Haryadi S Gunawi, Riza O Suminto, Russell Sears, Casey Golliher,
Swaminathan Sundararaman, Xing Lin, Tim Emami, Weiguang Sheng,
Nematollah Bidokhti, Caitie McCaffrey, et al. 2018. Fail-slow at scale:
Evidence of hardware performance faults in large production systems.
ACM Transactions on Storage (TOS) 14, 3 (2018), 23.

[26] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2010. Char-
acterizing the Influence of System Noise on Large-Scale Applications
by Simulation. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC’10). 1–11.

[27] Mary Inaba, Naoki Katoh, and Hiroshi Imai. 1994. Applications of
weighted Voronoi diagrams and randomization to variance-based k-
clustering. In Proceedings of the tenth annual symposium on Computa-
tional geometry. 332–339.

[28] Intel. 2018. Addressing Potential DGEMM/HPL Perf Variability on 24-
Core Intel Xeon Processor Scalable Family. White paper, number 606269,
revision 1.0.

[29] TR Jones, LB Brenner, and JM Fier. 2003. Impacts of operating systems
on the scalability of parallel applications. Lawrence Livermore National
Laboratory, Tech. Rep. UCRL-MI-202629 (2003).

[30] JE Kay, C Deser, A Phillips, A Mai, C Hannay, G Strand, JM Arblaster,
SC Bates, G Danabasoglu, J Edwards, et al. 2015. The Community
Earth System Model (CESM) large ensemble project: A community
resource for studying climate change in the presence of internal climate
variability. Bulletin of the American Meteorological Society 96, 8 (2015),
1333–1349.

[31] Ignacio Laguna, Dong H Ahn, Bronis R de Supinski, Saurabh Bagchi,
and Todd Gamblin. 2015. Diagnosis of Performance Faults in
LargeScale MPI Applications via Probabilistic Progress-Dependence
Inference. IEEE Transactions on Parallel and Distributed Systems (TPDS)
26, 5 (2015), 1280–1289.

[32] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn,
Ryan Stutsman, and Robert Ricci. 2018. Taming performance vari-
ability. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’18). 409–425.

[33] John. McCalpin. 2018. Memory Bandwidth: STREAM Benchmark
Performance Results. https://www.cs.virginia.edu/stream/

[34] John D McCalpin. 2018. HPL and DGEMM performance variability on
the Xeon Platinum 8160 processor. In SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 225–237.

[35] Subrata Mitra, Ignacio Laguna, Dong H Ahn, Saurabh Bagchi, Martin
Schulz, and Todd Gamblin. 2014. Accurate application progress
analysis for large-scale parallel debugging. In ACM SIGPLAN Notices
(PLDI’14), Vol. 49. ACM, 193–203.

[36] Oscar H Mondragon, Patrick G Bridges, Scott Levy, Kurt B Ferreira,
and PatrickWidener. 2016. Understanding performance interference in
next-generation HPC systems. In SC’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 384–395.

[37] Biswaranjan Panda, Deepthi Srinivasan, Huan Ke, Karan Gupta,
Vinayak Khot, and Haryadi S Gunawi. 2019. IASO: a fail-slow detection
and mitigation framework for distributed storage services. In 2019

https://github.com/zhihu/cuBERT
https://github.com/sysprog21/mapreduce
https://github.com/sysprog21/mapreduce
https://github.com/Nek5000/Nekbone
https://github.com/nikos912000/parallel-pagerank
https://github.com/nikos912000/parallel-pagerank
https://packages.debian.org/buster/stress
https://www.cs.virginia.edu/stream/


Vapro: Performance Variance Detection and Diagnosis for Parallel Applications PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

USENIX Annual Technical Conference (USENIX ATC’19). 47–62.
[38] Fabrizio Petrini, Darren J Kerbyson, and Scott Pakin. 2003. The

case of the missing supercomputer performance: Achieving optimal
performance on the 8,192 processors of ASCI Q. In SC’03: Proceedings
of the 2003 ACM/IEEE conference on Supercomputing. IEEE, 55–55.

[39] Andrew Rosenberg and Julia Hirschberg. 2007. V-measure: A
conditional entropy-based external cluster evaluation measure. In
Proceedings of the 2007 joint conference on empirical methods in natural
language processing and computational natural language learning
(EMNLP-CoNLL). 410–420.

[40] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve.
2013. Using likely invariants for automated software fault localization.
In Proceedings of the eighteenth international conference on Architectural
support for programming languages and operating systems. 139–152.

[41] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. 2010. Run-
time measurements in the cloud: observing, analyzing, and reducing
variance. Proceedings of the VLDB Endowment 3, 1-2 (2010), 460–471.

[42] Malte Schwarzkopf, Derek G Murray, and Steven Hand. 2012. The
seven deadly sins of cloud computing research. In 4th USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud’12).

[43] Aamer Shah, Matthias Müller, and Felix Wolf. 2018. Estimating
the impact of external interference on application performance. In
European Conference on Parallel Processing. Springer, 46–58.

[44] Timothy Sherwood, Erez Perelman, and Brad Calder. 2001. Basic block
distribution analysis to find periodic behavior and simulation points
in applications. In Proceedings 2001 International Conference on Parallel
Architectures and Compilation Techniques (PACT’01). IEEE, 3–14.

[45] Timothy Sherwood, Suleyman Sair, and Brad Calder. 2003. Phase
tracking and prediction. InACM SIGARCHComputer Architecture News,
Vol. 31. ACM, 336–349.

[46] Alexandros Stamatakis. 2006. RAxML-VI-HPC: maximum likelihood-
based phylogenetic analyses with thousands of taxa and mixed models.
Bioinformatics 22, 21 (2006), 2688–2690.

[47] Pengfei Su, Shuyin Jiao, Milind Chabbi, and Xu Liu. 2019. Pin-
pointing performance inefficiencies via lightweight variance profiling.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’19). 1–19.

[48] Xiongchao Tang, Jidong Zhai, Xuehai Qian, Bingsheng He, Wei Xue,
and Wenguang Chen. 2018. vSensor: leveraging fixed-workload snip-
pets of programs for performance variance detection. In Proceedings of
the 23rd ACM SIGPLAN symposium on principles and practice of parallel
programming (PPoPP’18). 124–136.

[49] Jeffrey Vetter. 2002. Dynamic statistical profiling of communication
activity in distributed applications. ACM SIGMETRICS Performance
Evaluation Review 30, 1 (2002), 240–250.

[50] Jeffrey Vetter and Chris Chambreau. 2005. mpip: Lightweight, scalable
mpi profiling. (2005).

[51] Vincent M Weaver, Dan Terpstra, and Shirley Moore. 2013. Non-
determinism and overcount on modern hardware performance counter
implementations. In 2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS’13). IEEE, 215–224.

[52] Brian J. N. Wylie, Markus Geimer, and Felix Wolf. 2008. Performance
measurement and analysis of large-scale parallel applications on
leadership computing systems. Scientific programming 16, 2-3 (April
2008), 167–181.

[53] Ulrike Meier Yang et al. 2002. BoomerAMG: a parallel algebraic
multigrid solver and preconditioner. Applied Numerical Mathematics
41, 1 (2002), 155–177.

[54] Ahmad Yasin. 2014. A top-down method for performance analysis
and counters architecture. In 2014 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS’14). IEEE, 35–44.

[55] Teng Yu, Wenlai Zhao, Pan Liu, Vladimir Janjic, Xiaohan Yan, Shicai
Wang, Haohuan Fu, Guangwen Yang, and John Thomson. 2019. Large-
Scale Automatic K-Means Clustering for Heterogeneous Many-Core

Supercomputer. IEEE Transactions on Parallel and Distributed Systems
(TPDS) (2019).

[56] Jidong Zhai, Jianfei Hu, Xiongchao Tang, XiaosongMa, andWenguang
Chen. 2014. Cypress: Combining static and dynamic analysis for top-
down communication trace compression. In SC’14: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 143–153.

[57] Weihua Zhang, Xiaofeng Ji, Bo Song, Shiqiang Yu, Haibo Chen, Tao Li,
Pen-Chung Yew, and Wenyun Zhao. 2016. Varcatcher: A framework
for tackling performance variability of parallel workloads on multi-
core. IEEE Transactions on Parallel and Distributed Systems (TPDS) 28,
4 (2016), 1215–1228.


	Abstract
	1 Introduction
	2 Overview
	3 Performance Variance Detection
	3.1 Fixed-workload Fragments
	3.2 State Transition Graph
	3.3 Performance Data Collection
	3.4 Identifying Fixed-workload Fragments
	3.5 Performance Variance Detection

	4 Performance Variance Diagnosis
	4.1 Variance Breakdown Model
	4.2 Quantifying Time of Factors
	4.3 Progressive Variance Diagnosis

	5 Implementation
	6 Evaluation
	6.1 Evaluation Setup
	6.2 Overhead and Detection Coverage
	6.3 Verification of Fixed Workload Identification
	6.4 Comparing with Profiling Tools
	6.5 Case Studies

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

