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Tensor Programs

* Widely used in deep learning
* Represented as computation graphs

1

A tensor
(n-dimensional array)
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Tensor Program Transformations

» Goal: optimizing program performance
W1 Input W, W, W, Input
N mnd

Original Program Optimized Program
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Automatic Transformations

 Superoptimization-based approaches (TASO! and PET?)

. Predefined operators

(cuDNN, ... Step 1: enumerate programs

Predefined-operator-representable (POR)
programs

Naa” v @/

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19
2. PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. OSDI'21
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EINNET

« Atensor program optimizer based on tensor expression derivation
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Prior work
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Larger optimization space and up to 2.7x speedup
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Motivating Example: Convolution to Matmul
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alongrands

Split filter
alongrands

Convixl

A e Conv3x3 = Convixl Convlxl - Matmul

2x speedup on Nvidia A100 GPUs
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Matmul
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Non-predefined operators enable more optimizations
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Tensor Expressions

» Specify the computation semantics
P[m,n]=Matmul (4, B)

= L X Alm,k]Blk,n]

mn k
n
Nested )
k| nputs Input C expressions
for multiple
k L ¥ operators /

Output P Output Q

m | inputa | =p| Matmul | g | Matmul :LE{L EA[m,k]B[k,n]}[m,k]C[k,n]

mn k mn k

n
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Key Challenges

1. discover transformations 2. execute expressions on HW

! !

Tensor expressions Execution strategies
) - Lys Al2w + 5] Q(LrwAll + w])
LLLLF‘ - ) » — 1 ) . X [ ] C{p X
L, A[n/2]BIn] ) L, A[n] B[2n] | (LaAl~) B(20)
é [LhZ,,,A[r,h-Fr]]

3. explore the large search space
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Challenge#1: Expression Transformation

A strawman approach: superoptimization for expressions

I t ' Enumerate [Candidates\
nput expression 24[1] % B [/]

24[i] + B[j] I Ali] + B[j]
B[j] + 2A[i] Verified

* Limitation
* Infinitely many expressions
« Hard to verify equivalence

EinNet discovers equivalent expressions by derivations
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Derivation Rules
» Mathematically equivalent rewrites

Intra-expression derivations Inter-expression derivations

Summation splitting L £ f(7.3,5.,5.) = {:;{j; ;f(f,z,gl,EQ)} [Z,5.]

Variable substitution fzf(ii) :Z{@?f@,@l@))} [®(2)] Expression splitting sz(ii) — )f;jf(f’,?:)ffgf(f’,?c)
Traversal merging E{Zf(i@)}[@l(z)] — L4(73) Expression merging ){;f(f,i)~)§f(ii):>§f(f‘,§:)
Boundary relaxing Lf(7.5) = X{fff(i@) Expression fusion .)éf(i?:) — ){gg(f’,%) — gg(f(ii))
Boundary tightening %;Yf(f@) ::Ef(fj)

« Support custom derivation rules
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Derivations Iin the Motivating Example

i (a)«_ﬁ L S Alh+rw+s,cK[r,s,fc]

hwf crs

---------------------------------------------------- jﬁ Summation splitting: divides summation into two steps

é > along c| [ along ¢ (b) — h];_ulfgj {rs],—;iwfzc}A[h —l_ r,w —|_ S,C]K[T,S,f,C]}“'
| tl = h+7’

X along rs i Variable substitution: replace h,w with t,, t, {t w4 s
, =

H-+rW+s
:---{L {L L L EA[tl,tg,c]K[r,s,f,c]}[r,s,f,h—l—r,w—l—s]}---

rshwf \rsf t;=r t,=s8 c

Derivation creates new equivalent expressions
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Challenge#2: Executing Expressions

Program representations Execution strategies

Computation graph ::)

Compute-intensive

- (Conv](Add] operators Vendor libraries  [JEPENEN

Predefined operators Vet (cuDNN, ..) iEfflClenti

! I

Derivation ‘ 10perator matching i |
|

- . I

q Tensor Expressions {Ehi[fl[:h];r[g] Kema!vgl\eﬂner;\tors E F|eX|b|eE

= Memory-bound = : :

operators

Combine the benefits of vendor libraries and kernel generators
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Operator Matching & Kernel Generation

A j K _> L XAh+r,w+s,c]K|[r,s,f,c]

hwf crs

l Several steps of derivations

H w
= LE{L L L ZA[tl,t2,c]K[r,s,f,c]}[r,s,f,h+r,w+s]

hwfrs \rsft;,=0¢t=0 ¢

Operator matching: replace
compute-intensive expressions

A I K | = LXT '
L ETilr.s fih+rws] with Matmul(K, A)
Matmul |

T, - 7 Kernel generation: tune kernels
Add with offset for memory-bound expressions

* Details available in the paper
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Challenge#3: Large search space

Input program
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More optimization opportunities
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Challenge#3: Large search space

* A computation graph of a single convolution
* ~10 steps of derivation
« ~10% candidates
* ~10 hours

Solution: expression distance to guide search
* Measure similarity between expressions
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Expression-Distance-Guided Search

* TWO search stages

Initial expression

» Stage | explore search space
* Apply all possible derivations

 Stage Il: converge to performant operators 2
» Guided by expression distance
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Evaluation

Platforms:
Nvidia A100 & V100 GPUs

Backends:
cUBLAS + cuDNN, AutoTVM, Ansor

Models:

Language model: Longformer
Image generation: INfoGAN, DCGAN, FSRCNN

Image understanding: GCN, ResNet-18, CSRNet

Baseline:
TensorRT, PET, Tensorflow, Tensorflow-XLA, Nimble, TVM
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End-to-End Inference Evaluation (Nvidia A100 GPU)

TensorFLow-XLA TensorRT PET EinNet
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InfoGAN DCGAN FSRCNN GCN ResNet-18 CSRNet Longformer

EinNet outperforms existing optimizers by up to 2.7x
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EINNET is a derivation-based tensor program optimizer

gProposed technigue: expression derivation

@

°Larger search space: general tensor algebra transformations

¥
@Better performance: up to 2.7x speedup

Available at: https://github.com/InfiniTensor/InfiniTensor
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https://github.com/InfiniTensor/InfiniTensor

Q&A

Thank you!
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