EinNet: Optimizing Tensor Programs with Derivation-Based Transformations

Liyan Zheng, Haojie Wang, Jidong Zhai, Muyan Hu, Zixuan Ma, Tuowei Wang, Shuhong Huang, Xupeng Miao, Shizhi Tang, Kezhao Huang, Zhihao Jia

MOTIVATION

Tensor program transformations

- Optimize program performance
- Preserve program outputs

Automatic program optimizers

Superoptimization-based approaches

- Step I: enumerate candidate programs by predefined operators \rightarrow limited space
- Step II: verify candidate programs with the original program \rightarrow time-consuming

Derivation-based optimizer (our work)

\& Proposed technique: tensor expression derivation
(D) Larger search space: tensor algebra transformations
(ㅇ) Better performance: up to $2.7 x$ speedup

APPROACH

Tensor algebra expressions

Specify computation semantics mathematically
Nested expressions for multiple operators

Traversal notation notates the output shape
\square

Traversal and summation iterators with ranges

Accessing elements with symbolic algebra expressions

Expression derivation

Mathematically equivalent rewrite

Expression execution

Different execution strategies

- Math libraries: efficient but only fixed routines
- Kernel generators: flexible but require timeconsuming tuning
Get an ideal combination via operator matching
- Compute-intensive operations \rightarrow libraries
- Memory-bound operations \rightarrow generators

Predefined operators eOperator (expression as an operator)
Conv Matmul Add ... $=$

