EINNET: Optimizing Tensor Programs with Derivation-Based Transformations

Liyan Zheng, Haojie Wang, Jidong Zhai, Muyan Hu, Zixuan Ma, Tuowei Wang, Shuhong Huang, Xupeng Miao, Shizhi Tang, Kezhao Huang, Zhihao Jia

MOTIVATION

Tensor program transformations

- Optimize program performance
- Preserve program outputs

<u>Automatic program optimizers</u>

Superoptimization-based approaches

- Step I: enumerate candidate programs
 by predefined operators → limited space
- Step II: verify candidate programs with the original program → time-consuming

Derivation-based optimizer (our work)

Proposed technique: tensor expression derivation
 Larger search space: tensor algebra transformations
 Better performance: up to <u>2.7x</u> speedup

Approach

Tensor algebra expressions

Specify computation semantics mathematically Nested expressions for multiple operators

Expression derivation

Mathematically equivalent rewrite $\Delta \mathcal{F}$

Expression execution

Different execution strategies

- Math libraries: efficient but only fixed routines
- Kernel generators: flexible but require timeconsuming tuning

Get an ideal combination via operator matching

- Compute-intensive operations \rightarrow libraries
- Memory-bound operations \rightarrow generators

Search expression transformation space

Stage I: enlarge search space

- Apply all derivation rules under a search depth limit
- Stage II: opportunistically leverage math libraries
- Reduce expression distance to target

Effective on different backends

EVALUATION

End-to-end inference (up to 2.7x speedup)

